
1

StudentX
SP24 Capstone Design: Final Design Report

Team Number SP24-36

Team memebers: Peter Chen, Mulugeta Akalu, Nikhil Agarwal,
Ishaan Keswani, Long Phan

Adviser(s): Bo Yuan

Abstract— Imagine if there was an online peer-to-peer

marketplace dedicated to the Rutgers community or any other
large university or college. This platform would be less susceptible
to fraud and would give students access to a broad selection of
relevant products and services from other students. While other
online peer-to-peer marketplaces may offer billions of items, they
often lack the sense of community and trust that many students
seek. Moreover, this platform could provide students with very
niche items that are in demand within the community; this can
range from specific textbooks to calculators tailored for certain
courses, or even furniture left by relocating students.

Our platform, StudentX, aims to develop a niche online peer-
to-peer marketplace for the Rutgers community, with potential
expansion to other large communities and institutions. Our goal is
to connect students within the community and facilitate the
discovery and exchange of a diverse selection of items, whilst also
helping students earn some extra money and reduce waste. Any
member of the Rutgers community will be able to sign up for the
app using their Rutgers email; with that, they’ll be able to access
our application features like direct messaging and recommended
relevant products and services- powered by sophisticated Machine
Learning recommendation systems. This ensures that users can
confidently purchase from other fellow students, thereby
enhancing security and providing a much more affordable
selection of relevant products.

Keywords— Exchange, Share, Buying, Selling, student, market,
machine learning, software engineering, semantic search,

recommendation system, peer-2-peer marketplace, peer-to-peer,
KNN, E-commerce, Website, Web application.

I. INTRODUCTION
A peer-to-peer marketplace is a website that connects people

who own a product or offer a service with people who want to
buy or rent it. Airbnb is a classic example. The role of the
website is to help these two groups of people find each other.
The site also handles marketplace payments and helps build trust
between the parties. Peer-to-peer marketplaces don’t need to
own or provide any of the products or services offered on their
platforms. This makes them relatively inexpensive to start. In
addition to Airbnb, famous examples include the product-selling
website Etsy and ride-hailing app Uber. Almost any product or
service can be sold through a P2P platform. The peer-to-peer
(P2P) marketplace ecosystem is estimated to be valued at US$

1,526.2 million in 2024 and is anticipated to reach US$ 8,474.8
million by 2034.

The rise of specialized marketplaces stands out as a pivotal
advancement in the evolution of peer-to-peer marketplace
platforms. Instead of aiming to cater to a broad audience,
entrepreneurs are now directing their efforts toward creating
highly focused markets tailored to specific industries or
interests. These specialized markets encompass various niches,
such as online boutiques specializing in vintage clothing,
artisanal crafts, local food providers, and beyond. By honing in
on specific niches, these markets can deliver tailored and unique
experiences to consumers, thereby enhancing user engagement
and fostering loyalty.

In the contemporary mobile-dominated landscape, adopting
a mobile-first strategy is paramount for the prosperity of any
online marketplace. Given that most users engage with these
platforms through their smartphones, it's imperative for
marketplace developers to prioritize creating mobile-responsive
and intuitive applications. Consequently, there's been a notable
uptick in the requirement for mobile app development services,
driven by marketplace owners' endeavors to deliver a smooth
and hassle-free experience to their clientele.

Personalization stands out as a pivotal trend in the evolution
of peer-to-peer marketplace platforms. Utilizing artificial
intelligence and machine learning, these platforms offer users
customized product suggestions, search outcomes, and content.
Through the analysis of user interactions and preferences, these
systems elevate user satisfaction and improve transaction
efficacy. This personalized approach not only amplifies user
engagement but also generates increased revenue for
marketplace operators.

Establishing trust and safety holds utmost importance within
peer-to-peer marketplaces. Users must feel confident in their
transactions, whether buying or selling on these platforms. To
tackle this challenge, marketplaces are adopting diverse trust
and safety protocols, including user authentication, background
screenings, rating systems, and secure payment gateways.
Additionally, there's a growing trend toward transparency in
user profiles and transaction records to foster trust among
community participants.

The localization trend is rapidly gaining traction as users
prioritize accessing products and services in close proximity.
Hyperlocal marketplaces facilitate connections between users
and nearby businesses, promoting a sense of community and
convenience. These platforms commonly cater to services such
as food delivery, home repairs, and local event listings. The
pandemic has additionally expedited the expansion of
hyperlocal marketplaces, as individuals increasingly seek
nearby options to fulfill their daily requirements.

The flexibility and adaptability of peer-to-peer marketplace
platforms are on the rise thanks to API (application
programming interface) integration and open platforms.
Marketplace owners are realizing the benefits of enabling third-
party developers to craft complementary apps and services,
enriching the overall user experience. This strategy fosters
innovation and broadens the ecosystem surrounding the
marketplace.

There are challenges faced by the peer-to-peer marketplace
ecosystem. P2P marketplaces often operate in regulatory gray
areas, facing scrutiny from regulatory bodies in various
jurisdictions. They also face problems related to compliance
with local regulations, including taxation, licensing, and
consumer protection laws. Maintaining quality standards across
a diverse range of goods and services offered on P2P
marketplaces can be challenging.

In most popular peer-to-peer marketplaces customers find a
lot of goods and services but not necessarily a community they
desire. In a community-centered peer-to-peer marketplace, it is
easier for the parties to trust each other and find a large selection
of relevant goods and services. We believe the Rutgers
community can benefit greatly from a marketplace designed to
be accessed by a university credential. Such a platform will offer
a large selection of relevant used items at cheaper prices,
especially at year-end when graduating students are looking to
get rid of a lot of useful material. It will also provide a sense of
community they desire, a safer and more convenient transaction
experience.

II. CONCEPTUAL DESIGN

A. Web Application
We will begin by developing the web application for

StudentX. This web application will encompass several key
features aimed at creating a seamless platform for Rutgers
University students to exchange stuff. We will incorporate our
own user authentication system, and get sellers to verify via
Rutgers NETID, to ensure security. The application will
empower users to efficiently manage their listings. Sellers will
easily be able to manage creating listings, editing them, and
deleting them. They’ll be able to add information about the item
they’re selling such as descriptions, prices, and categories. We’ll
have designated categories for students such as parking spots,
places for rent, and other student items. We’ll also incorporate
robust search and filtering functionalities to help users to find
specific items easily. A direct messaging system will facilitate
communication between buyers and sellers while prioritizing
user privacy. To streamline transactions, our web app will have
a secure payment processing system, with escrow, that will be
integrated using a third-party API like Stripe or PayPal. Our web

design will also be responsive, to ensure optimal user
experiences across various devices, including desktop and
mobile platforms. We will ensure that our site is responsive by
incorporating well-known industry standard frameworks and
libraries such as TailWind CSS. We will also couple this
together with a sophisticated backend system built with Python.
While originally, we were planning to utilize React for the
frontend side of our web application, we realized how difficult
it can be– as well as the notable learning curve for the entire
team- to build different parts of the application using different
programming languages. So instead, we now opt to use Flask to
help build and manage our web application. Coupled with
Google’s Firebase, we’ll be able to seamlessly complete the
project at a relatively low cost. Alongside this, we will utilize
Docker containers to help us create a scalable and transferable
application which we’ll be able to run everywhere.

B. Machine Learning
We will also focus on a machine learning component of

StudentX. The purpose of this will be to implement a
recommendation system to enhance the user experience. By
analyzing user behavior, including time spent on items, purchase
history, and various user interactions, we will implement an
algorithm to suggest relevant items to individual users. The
model will be designed for continuous improvement, tailoring
recommendations based on evolving user preferences. The
technology stack for this component will include Python for
machine learning development, with considerations for popular
libraries and frameworks such as PyTorch. Our data will come
from our user base, and we will test numerous models to validate
the accuracy of our model using historical user data. We’ll also
seamlessly integrate the machine learning model into both the
web and mobile applications to ensure real-time updating of
recommendations based on user interactions..

III. METHODS / RESULTS (ANY RELEVANT) / APPROACH
Our idea for this system’s behavior and how it will look

should be quite simple. It will have a few key interfaces that the
user can navigate between, including a store page, a marketplace
page, and a user information page. On top of that, we had been
contemplating a chat page where users could message each other
about products and buy and sell them. This was the high-level
overview of what we think this system would be like. That also
covers the behavior, a simple application that would give users
the freedom to set their own prices and talk freely with one
another about items of interest. Even more, we thought that to
make our project unique, we would integrate it with some
machine learning algorithms such that users are able to
optimally search and find items that they need.

From the start, we were thinking of building a mobile
application or a web application. However, after considerations
and estimates of the scope of work, we settled on focusing on aa
web application given the time constraints of the project.

After deciding on creating a web application, we had to
figure out what technologies we would use to build it, such as
what kind of database, what programming languages, etc. Give
that we wanted to build a recommendation system and
incorporate NLP, we decided on a Python web development
framework, Flask. This allowed us to seamlessly incorporate

PyTorch into our backend. Using plain HTML and CSS, we
built the front end with JQuery and Bootstrap so that the website
would be responsive across different screen sizes; this will also
make it easier for our website style to appear consistent across
different website pages.

This led to the next design/implementation challenge:
selecting a database at a low cost. So, to optimize that and to
minimize the use of any server, we decided to go with a
serverless design and utilize GCP’s- Google Cloud’s- various
features to do this. Due to this architecture, which we chose to
save money, we ended up having to use a NoSQL database; and
what better one to use than Google’s own Firebase? This allows
us to find and access data extremely quickly and efficiently.

Provided below is a design of the final & deployed system.

And so this was our overall plan: first focus on building out

the database structure, then the backend (mostly referring to our
web APIs), and finally the UI/frontend. In this manner, we can
intuitively figure out and plan out the core parts of the system
and then build on top of that. Finally, when all of this was
completed, we could add on our machine learning models and
algorithms.

Provided below are more in-depth explanations about the
technologies and implementations for the Semantic Search,
KNN recommendation system, Chat, Store & UI
functions/design.

A. Database & File Storage
For this project, we used Google’s Firebase real-time

database & and file storage. The database is key-value and
nonrelational which provides certain advantages with tradeoffs.
Central to the database are the unique IDs we generate for all
users, chatrooms, and items. uuid.uuid4() generates a unique
identifier using random numbers. This UUID (Universally
Unique Identifier) is a 128-bit number, typically represented in
hexadecimal format and used to ensure that identifiers are
unique across different systems and contexts without a central
coordinating entity.

The database has four main paths: ‘users’, ‘store’, ‘chats’,
and ‘surveys’.

The store path holds every item that is uploaded to the store.
The store path is divided into categories followed by item_ids of

the items in that category. The reference to a specific item in the
store would then be /store/<category>/<item_id>. As shown
below on the left there are three items in the store corresponding
to the book category.

Above in the seconds image, we see the attributes stored in an
item reference for item_id ‘183d1d6f-0f5b-4418-a513-
04e2bfda4ecf’. We store the category, time the item was created,
description, price, a link to the image in file storage, the number
of views (impressions), the item_id, the user ID of the seller, the
title of the item, and the time the item was updated (same as
created time if no updates). Users use the following form to
create items (listings).

 The chat path holds every chat room that is created on our
platform. Chatrooms can only be created between two users and
are assigned a unique chat_id. To retrieve all the information
about a specific chatroom, we make a get call to the
/chat/<chat_id> path. Each chat holds the user IDs of the two
users in that chat room, as well as all the messages sent in that
chatroom (in chronological order). Ever message object that is
stored holds the chat_id of the chatroom it was sent in, the
message, the time the message was processed by the server, as
well as the user ID of the sender.

 As shown above, there exists a chat with chat_id ‘0c51acb9-
cebe-4514-a04d-452498f37469’ that holds three messages sent
between users ‘13c35d5b-ae20-44a2-b09b-f68d1cab28c6’ and
‘8467b3d0-d26b-46d4-999c-952a2245089f’. Users can create
chatrooms by clicking the message seller button on any item
page. If they already have a chatroom with the seller, then we do
not create a new room. If they do not share a room, we create a
new one and store it under ‘chats’.

The survey path holds all the responses from every user who

took the survey for our recommendation system. To get the

survey information for a specific user we make a get call on the
path /surveys/<user_id>.

 The user path holds all the information about a specific user.
The attributes for each user are added at the time of login/signup
and throughout our platform experience in the form of
preferences, item favorites, cart items, profile pictures, etc. Each
user is assigned a unique user ID using uuid.uuid4() in Python.
Below is Nikhil’s user profile stored under the user/<user_id>
path.

The basic attributes of email, uid, password (encrypted), and

name are all present and generated when the user signs up. The
user can also edit these attributes on the profile page along with
their profile picture. Some of the most crucial parts of our
database design occur in the /user/<user_id>/fav and
/user/<user_id>/chat paths within each user object.

 Recall that we store uid information in the ‘chats’ path
{“user1”: <user1_id>, “user2”: <user2_id>}. To load all the
chats that Nikhil is in, we would need to loop through each
chat_id attribute and check if Nikhil’s uid is present as either
user1 or user2. This becomes highly inefficient as the number of
chatrooms grows. To fix this, we keep a list of chat_ids that
Nikhil belongs to in the user attribute itself. Then for each
chat_id, we make a call to the path /chats/<chat_id> to compile
a list of all chats that Nikhil is a part of. We do the same thing
for items that a user favorites as well as items a user adds to the
cart.

Above we see that the user has one item in their favorites list,
storing both the category of that item as well as the item_id
which allows us to make a call to the path
/store/<category>/<item_id> to get the information of that item,
instead of having to loop through every item in the store.

B. NLP Semantic Search

Backend Code Files: store.py, faq.py
Frontend Code Files: shop.html, faq.html, faq.js, shop.js

Semantic search refers to a search technique that seeks to
improve search accuracy by understanding the searcher's intent
and the contextual meaning of terms as they appear in the
searchable dataspace. Unlike traditional keyword-based
searches, which only look for matches of the exact query words
or phrases, semantic search considers various factors including
the context of the search query, the relationship between the
words, synonyms, generalized and specialized queries, and
natural language as it is used in everyday communication.

This approach enables the search algorithm to understand the
query at a deeper level and return results that are more aligned
with the user's intent, even if the exact words from the query
aren't present in the results. Semantic search is widely used in
various applications, including web search engines, information
retrieval systems, and artificial intelligence models, to provide
more relevant and contextually appropriate results.

 For this project, we used a Hugging Face pre-trained
transformer to generate text embeddings for strings. In other
words, converting strings to numerical vectors. A diagram of the
general transformer is provided below.

On our store and FAQ pages, the search function takes the

user search input and feeds it to the transformer to generate a
text embedding. We then compare the text embedding to the
embeddings of items in the store or questions in the FAQ using
cosine similarity. The input strings for items in the store are the
“item name” + “item category”.

Cosine similarity is a metric used to determine how similar
two vectors are by measuring the cosine of the angle between
them. It's particularly useful in fields like text analysis and
information retrieval, where each vector might represent a
document or a set of features. In our project's case, it is a vector
indicating the semantic meaning of the user's search and the
products in our store. In essence, cosine similarity assesses the
orientation of two vectors in a multidimensional space, rather
than their magnitude. The outcome of this measurement ranges
from -1 to 1. A value of 1 indicates that the vectors are pointing
in the same direction, suggesting high similarity. A value of 0
means the vectors are perpendicular, showing no similarity,

while a value of -1 implies that the vectors are in opposite
directions, indicating complete dissimilarity.

The equation is quite simple and involves dot products and
magnitude calculations:

To utilize this equation efficiently and calculate the

similarity scores for multiple vectors, we used sci-kit learn’s
functions for cosine similarity.

 This function is fully implemented in our store. Take the
search “google” for example. We do not have any Google tech
products in the store, but we do have Apple tech products. If we
were using a keyword search, the search would not return any
items to the user. However, since we are able to calculate the
semantic meaning of the word Google and find similar items
such as related tech products or Apple tech products, we can
display these items to the user instead.

 Further, we use a pipeline to a pre-trained Hugging Face
model that detects and corrects typos. Since we do not know
exactly what the user would like to search for, we do not
automatically correct the search. Instead, we suggest the correct
search and give the user the option to utilize it.

 As shown above, the correct search is suggested and utilized
by the user. In the end, the most semantically similar question is
prioritized at the top and enables the user to find the answer.

C. KNN Recommendation System

Backend Code Files: questionnaire.py, store.py,
user_matrix.py
Frontend Code Files: questionnaire.html, shop.html, shop.js

As part of the project requirements we set for ourselves, we
built a KNN recommendation system for users. The system
consists of two independent parts. First is the user matrix that is
generated for each user, and second is the tracking of items
viewed by a user. The idea is that we show similar items to
similar users.

 We generate a user matrix for each user by providing a user
with a survey before they can access the recommendation
category in the store. The survey is tailored specifically to
Rutgers students and questions about what school a user is in
and what campus they live on etc.

 The answers are stored in our database using one-hot
encoding. This allows us to calculate the distance between user
answers without giving bias to one answer over another. From
here the distance calculation is straightforward. Let’s say user1
selected “sophomore” and user2 selected “senior”, we would
store the answers in our database as [0, 1, 0, 0, 0, 0, 0] & [0, 0,
0, 1, 0, 0, 0], so the distance would be 2. If both users had
selected “sophomore” then the distance would be 0. Further, we
calculate the distance differently for the housing category.

Now comes the challenge of selecting weights for each
distance metric. After calculating distances for each question on
the survey, we are left with 6 distance values. To generate a
single numerical value that we can use to sort users in our KNN
model, we take a weighted average of all the distance values
calculated. The weightings are as follows:

 12.5% → Drive

 7.5% → Enrollment

 25% → Housing

 15% → Academic Year

 12.5% → School

 27.5% → Category Preferences

The most weight is given to where a student is on campus as
well as to what categories a student prefers. In this way, we sort
and compare user matrices for KNN by giving larger weights to
where students are located approximately and what students
want to see. Users can retake the survey whenever they want and
can change their responses to whatever they choose.

The second part of the recommendation system requires that
we keep track of the items that a user has most recently viewed.
We specifically keep track of the 5 items that a user has most
recently viewed in the database.

KNN can be quite computationally expensive, especially as
the number of users increases. To help mitigate this, our model
randomly selects 100 other users (that have filled out the survey)
to compare with so that we only calculate the distances between
user matrices for 100 users at max. After determining the
weighted average distances between the current user matrix and
the 100 randomly selected matrices, we sort the distances and
choose the “closest” most similar 5 users. We then compile a list
of all the items those 5 users have looked at most recently and
display them to our current user. If there are less than 100 users
at any time, we simply use the user matrices for all the users that
are currently available.

D. Direct Messaging
Backend Code Files: chat.py, app.py
Frontend Code Files: chat.html, chat.js

To build the direct messaging system, we utilized Flask-
SocketIO.

Flask-SocketIO is an extension of the Flask web framework
that enhances it with real-time communication capabilities,
integrating seamlessly with the Socket.IO library to support bi-
directional communication via WebSockets. This setup allows
servers to send real-time updates to clients without requiring
continuous polling. To start using Flask-SocketIO, you first
install the library, create a SocketIO instance, and integrate it
with your Flask application. It primarily works through event
handling, where both the server and clients can emit and listen
for events, enabling reactive functionalities like in chat
applications where the server broadcasts new messages to all
clients instantly. Flask-SocketIO also manages WebSocket
connections and automatically resorts to long-polling if
necessary, ensuring broad compatibility. Additionally, it
supports organizing sockets into namespaces and rooms for
efficient message targeting, making it ideal for scenarios like
specific chat rooms or user groups. Integrated deeply with Flask,
it works smoothly with both development and production
setups, particularly when paired with WSGI servers and tools
like Gunicorn for handling production traffic.

First, we need to create a chat room between two users in the
database. After generating a unique chat ID using the inbuilt
uuid library in Python, we know exactly which users can connect
to that room, where to store the messages for that chatroom, and
what the most recent message is in that chatroom.

Second, when a user accesses the chat page we immediately
connect the user to the socket via a route
(@socketio.on(“connect”)) and get all of the chat IDs that the
user belongs to. Separately we keep a server that keeps track of
all the active connections in chat. This tracker is in the form of
a Python dictionary (map) that holds chat IDs as keys. The value
of each chat ID key is another dictionary that has key’s ‘count’,
‘messages’, ‘new_message’, ‘recent_time_stamp’,
‘recent_message’, etc.

When the @socketio.on(“connect”) is triggered we check to
see if the chat_id key exists in our tracker. If it does not we create
it and load messages from the db into
tracker[chat_id][‘message’] as well as set
tracker[chat_id][‘count’] to 1. This specific count value refers to
the number of users that are currently connected in chat. In this
way, we know if we need to send email notifications or when to
update messages to the database, etc. For example, if both users
are connected to the chat we know that both users have read the
message, if not, and tracker[chat_id][‘count’] is 1 we know that
we need to send an email notification to the user that is not
connected to the chat. Any new messages that any user sends,
whether both users are connected to the chat or not, are stored in
tracker[chat_id][‘new_messages’].

Further, when a user connects to the socket if
tracker[chat_id] already exists, then we display previously
loaded messages in tracker[chat_id][‘messages’] as well as any
new messages that exist in tracker[chat_id][‘new_messages’]

and set tracker[chat_id][‘count’] to 2. In this way, when the
second person joins the chat, they are able to load the new
messages without accessing the database since we are keeping
track of new messages on the server. Additionally, when either
user joins and there are messages that have not been read by that
user, the message is in bold on the left had side similar to how
you would see it in iMessage.

Now when @socketio.on(“disconnect”) is triggered, we
subtract 1 from tracker[chat_id][‘count’] and check to see if that
value has dropped to 0 (indicating both parties have left the
chat). If ‘count’ is still greater than 0, we do nothing. However,
if both parties have left the chat, we take all the messages in
tracker[chat_id][‘new_message’] and upload them to the
database. We then delete tracker[chat_id] until a user from that
chat tries to join again.

Let’s take a look at how exactly messages are displayed in
real-time through our chat feature. Take for example if user1
messages something to user2.

As shown, the clients never directly talk to each other.

Instead, they communicate with the server and the server emits
messages back to them while providing the uid of the origin
user which allows both users to process the incoming message
accordingly. Below is a screenshot displaying the same chat
room from the perspective of different users.

Important to note is that the user is connected to every chat

room that the user is a part of. So if any new messages are sent,
regardless of the room that is currently displayed on the screen,
the most recent message in the chat room will automatically
update on the left-hand side of the chat. The user can then
freely navigate to any chat to view new messages. We made
sure to build the messaging system in a way that allows the

user to utilize and travel to any chat without accessing the
database. The database is only accessed when you load the chat
page itself, not while navigating the chat page.

We also keep track of user information in the backend like
user_id to name conversions so that we can display names,
timestamps, etc. to the user in a convenient and user-friendly
manner.

D. Store

Backend Code Files: store.py
Frontend Code Files: shop.js, shop.html

The store page contains four major functionalities and
utilizes jinja2 templating to pass properly structured items to the
front-end HTML page. Paramount to the store page are the
sorting and filtering functions for items, as well as the KNN
recommendation system and the NLP semantic search for items.

The Blue denotes all of the categories you can filter by as

well as by a ‘min price’, ‘max price’, or both. The Red allows
users to sort all the returned items from a query or filter by the
selected sort. Using Python’s built-in sort functions (lambda
functions) with keys, we can efficiently sort all the items
returned to the user.

The Green is a filter button for recommended items. When
this category is selected, the user is fed into the KNN
recommendation model, and the appropriate items are displayed
to the user. The Yellow circle denotes the search bar which
allows for NLP semantic search capabilities.

 Additionally, we feed the user the items in chunks to limit
the computation expense of loading an increasing number of
items as the store grows. Users can navigate multiple pages of
items.

E. Automatic Routing

Backend Code Files: app.py
Frontend Code Files: route.html, login_route.html,
signup_route.html, verify_route.html, route.js

Some of the pages on our website like the chat, store, and
profile pages can only be accessed if you are logged in as a
verified user. To check if a user is logged in we simply access
the flask session and try to fetch the ‘uid’ key. If the return result
is None we redirect the user to the login page. This is relatively
straightforward and ensures that users do not access pages that
require authentication. However, after the user logs in, the route
is static and programmed to send the user to the home page. So,
for example, if I tried to access the chat page, and I was not
logged in, the website would route me to the login but not route
me back to the chat page after logging in. Therefore, for user
convenience, we implemented automatic page routing after
logging in depending on how they were first routed to the login
page.

The fix was implementing routing using a routing key. The
routing keys are all randomly generated secret keys that are
stored in our .env file. So if we access the store page and we are
not logged in the backend will route the user to
/login/<store_routing_key>. For chat the route would be
/login/<chat_routing_key> and so on. The following URLs
route the user to an intermediary page called ‘route.html’ that
takes a routing_key input via Jinja2 templating and routes the
user to the appropriate page by submitting a form with a GET
method and the appropriate action. All of this is done almost
instantaneously and the user is displayed a loading sign on the
intermediary. Below is a screenshot of the login page with a
routing key to the books category in the store.

F. UI
Frontend Code Files: Everything under static /and html/

Originally, we had been planning to build our website using
some JS framework. This way we could create and build a
wide range of functionalities without having to write
everything ourselves. However, this idea quickly fell through
as we didn’t have many people in our team that were
experienced with using JS frameworks. So, given the fact that
we were already using Flask we decided to pivot and just use
plain old HTML and CSS as well as a little sprinkle of JS.

Creating a user interface that works smoothly across all
devices was a big challenge for us. We wanted our website to

look good and be easy to use whether you were on a computer
or a phone, meaning we wanted it to be dynamically responsive
across different screen sizes. That's where Bootstrap came in.
It's a collection of all these premade CSS classes that helped us
make sure everything looked right no matter what screen size
you were using. On top of that it saved us so much time from
having to individually write and configure every single element
and style. We could organize stuff neatly and make sure
everything looked the same, thanks to some fancy premade
styles given to us by Bootstrap. Even more, to decrease the size
of our deployment, we utilized Bootstrap CDNs which are
content delivery networks so that we could easily and quickly
download the stuff that we needed from Bootstrap without
having to store these massive files in our codebase. Another
unique feature about Bootstrap is that it has a few built in
animations and it also helps us integrate a few other lesser
known but quite useful libraries into our codebase and website.
This way, we didn’t have to import a large number of other
libraries and could easily just gain access to countless JS
scripts just from Bootstrap alone.

While we spearheaded our UI development using
Bootstrap, we faced a number of other challenges too, with one
of them being image loading. Oftentimes, we would have
many images trying to load onto the screen at once. This would
slow down the performance of our website, and lead to a bad
user experience. So we added lazy loading. Essentially, instead
of loading all the images at once when you open the page, they
only load when you scroll down to them and when they appear
on the portion of the screen that the user sees. It made the site a
lot faster and smoother to use. On top of this, we sent most of
our queries such as sorts to the server-side instead of finishing
it on the client side. This was a way for us to cache and
organize and keep track of different searches in one place
while at the same time boosting the website performance for
the user.

In the end, we managed to create a UI that not only looks good
but also works well, thanks to the combination of HTML, CSS,
JavaScript, and Bootstrap. It was a bit tricky at times, but
overcoming those challenges made the final result even more
satisfying. It was scalable across multiple screen sizes and we
were able to have all of the functionalities work regardless of
device and platform.

IV. COST AND SUSTAINABILITY ANALYSIS
For us, the total cost of the prototype that we developed- the

website that ran locally in a controlled environment- is $0.
Although we used Firebase and deployed it via GCP, we landed
within the free tier limits of each of these services, thus we did
not need to pay anything. However, if our app receives greater
usage, we would need to pay a significantly greater amount for
both storage, API calls, and calculations by our Machine
Learning model on GCP’s servers. In short, we use
authentication, image storage, and real-time storage with
Firebase, and all of these increase with user count, which will
prompt us to move on to Google’s Blaze plan from our current
Spark plan. Although it is hard to exactly calculate how much,
depending on how much of each kind of data we have, it can
potentially reach $730 a month for storage for roughly 50,000
users.

For our real-time database, it costs about $5/GB to store and
$1/GB to download. On top of that, for cloud storage, it costs
about $0.026/GB stored, this is more for stuff like images and
larger files that we may store. For our machine learning model,
it is hard to exactly put a number on how much this will cost
since the cost heavily depends on not just who the model is
generating recommendations for, but also how much data it must
scan to calculate the recommendations. Thus, overall, with all of
these costs in mind, we came up with roughly $730 per month.

Other annual one-time costs that we did not mention include
our domain name, SSL certificates, and Cloudflare subscriptions
to protect us from cyber-attacks. All of this should be relatively
cheap and should be no more than $100 per year. It is important
to note that displaying ads on our platform could help us offset
these costs given that we do not charge users any fees for using
our platform.

For users, our platform is extremely cheap. Again, we
highlight the fact that we give users complete freedom as we do
not charge users anything for making transactions. This means
that users will pay us nothing ($0) to list and use our platform
and they will keep 100% of the money that they make.

Our project should have a significant positive impact on
people’s lives, especially college students based on our current
platform focus. Our project will help significantly reduce waste
by allowing students to give away/sell their items to other
students. At the same time, users will be able to earn extra
money on the side and find exclusive items that they might need
at a lower price. We do believe that this product can significantly
change consumption patterns. Users, mostly students for now,
will no longer need to buy expensive items from stores such as
Barnes and Noble or purchase hefty furniture. Instead, via our
platform they will be able to save significant money by utilizing
our platform to find other students who are trying to get rid of
unused items.

As our product isn’t automating anything necessarily, it
won’t impact employment. Although we aren’t creating a new
field with our project, if we succeed and gain enough users, we
will be able to expand and help create new jobs. We envision the
possibility of the existence of student ambassadors who can help
us establish our platform in various communities. By doing so,
we can help students gain experience and find employment
much more easily.

Finally, as our product is purely software, it poses little to no
threat to our user's health or safety. Although extremely
unlikely, it is possible that we could face regulatory action- not
so much from the government, but from colleges more likely.
Since we are helping students find good deals and exchange with
one another, it is possible that we are redirecting many students
who would potentially be further customers of the university -
by buying stuff such as new school materials or new textbooks.
Because of this loss of business, it is possible that schools could
potentially ban our application to increase their own sales and
revenue. This would be the only possible type of foreseeable
“regulatory” action that we could face.

V. CONCLUSION/SUMMARY
The StudentX project aimed to create a special online

marketplace for Rutgers students, with the potential for

expansion to other universities. It aimed to build trust and
community while helping students find relevant items and earn
money. The project used a mix of technical tools like databases,
user interfaces, and machine learning to make the platform work
well. It successfully launched the StudentX website with
features like user registration, item listing, and real-time
messaging. StudentX is important because it fills a gap in the
market by offering a safe and community-focused platform for
students to buy and sell items. It helps reduce clutter during
dorm move-outs and makes buying safer for students. In the
future, StudentX could improve its recommendation system and
expand to more universities. It could also consider showing ads
to cover costs and keep the platform free for users. In
conclusion, StudentX is a useful platform for students, making
buying and selling easier and safer within the campus
community. It helps build trust and connections among students,
making campus life better.

ACKNOWLEDGMENT

 Thank you to Professor Bo Yuan for advising the team to
complete this project. We appreciate support from Rutgers

University and Professor Sasan Haghani for the Introduction to
Capstone and Capstone Design classes.

REFERENCES
[1] https://firebase.google.com/docs
[2] https://flask.palletsprojects.com/en/3.0.x/
[3] https://pytorch.org/tutorials/
[4] https://console.cloud.google.com/billing
[5] CodeBrewLabs. "The Current Trends in Peer-to-Peer
Marketplace Development." Medium,
 06 November 2023,
www.medium.com/@samiksha.shukla_2591/the-
 current-trends-in-peer-to-peer-marketplace-development-
6f38e3c262ea.
 Accessed 29 April 2024.
[6] Dmytro. Oleksandra "Top 15 Online Marketplace Trends to
Watch Out for in 2024." Codica,
 18 January 2024, www.codica.com/blog/online-marketplace-
trends. Accessed 29 April 2024.
[7] Dr. Bajwa’s Introduction to Machine Learning ECE443 /
ECE539 course lecture slides
 https://rutgers.instructure.com/courses/243699/files,

	I. Introduction
	II. Conceptual Design
	A. Web Application
	B. Machine Learning

	III. Methods / Results (any relevant) / Approach
	A. Database & File Storage
	B. NLP Semantic Search
	C. KNN Recommendation System
	D. Direct Messaging
	D. Store
	E. Automatic Routing
	F. UI

	IV. Cost and Sustainability Analysis
	V. Conclusion/Summary
	Acknowledgment
	Thank you to Professor Bo Yuan for advising the team to complete this project. We appreciate support from Rutgers University and Professor Sasan Haghani for the Introduction to Capstone and Capstone Design classes.
	References

